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MONOTONICITY IN SELECTION PROBLEMS: A
UNIFIED APPROACH
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DiS‘t»I‘i Eut iony

i by | Availability goges

Roger L. Berger and Frank Proschan

ABSTRACT
Let X = (xl, cvsy xn) have a density g(x, )) which is decreasing
in transposition, where A = (Al, cees An). Suppose one wishes to se-
f lect a subset of (1, ..., n} containing the subscripts associated with
the largest values of the A,'s. Let S(x) be a permutation invariant

selection rule which always selects a subset associated with the largest

values of the xi's. Let A = {i()),...,i(k)} < {1,...,n} and

B={j(1),...,j(k)}< {1,...,n} be such that Ai(s) 2 Aj(s)’ ss=s1,...,ke
Then the following three inequalities are proved. (|C| denotes the

number of elements in C. C® denotes the complement of C.)

) Px(lA nS(X)| 2m 2 chln n S(X)| 2 m) for every m ¢ R,

(11) Py(A = S(D) 2 P,(B = 5(), and (ii1) pA(|A° n S| s w2
PA(!BC n S(X)| < m) for every m ¢ R. These generalized monotonicity
properties are derived using a unified approach. The results apply to
selection rules proposed under scveral formulations of the selection

problem.
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1. Introduction. In this paper we study some monotonicity pro-

perties of ranking and selection rules. Let X = (xl, cees xn) be a
random observation with distribution F(x; A), where the unknown para-
meter vector )\ = (Al, caey An) € A cR". The general goal of a selec-
tion problem is to decide which coordinates of ) are the largest or
vwhich are larger than a value Ao (possibly unknown). This is accom-
plished by selecting S(x) <« {1, ..., n}, depending on X = x, and assert-
ing that the largest parameters are in {\.: i ¢ S(x)}. The subset S(X)
may be of fixed or random size depending on the formulation of the se-
lection problem under consideration. See, for example, Bechhofer (1954),
Gupta and Sobel (1958), Lehmann (1961), Gupta (1965) and Tong (1969)

for five formulations. In this paper, we will not be concerned with a
specific formulation of the selection problem or with rules which satis-
fy a specific probability requirement (sometimes called a P*-condition).
For our purposes a (nonrandomized) selection rule 5(5) is any mapping
from the sample space X of X into the set of subsets of {1, ..., n}.

The selection rules described in the above five formulations ali satisfy
this definition and the results derived herein appl)f to these rules.
Gupta (1965) calls a selection rule monotone if A 2 xj implies

PL“ € S(X)) 2 P,(j e S(X)). This monotonicity property is a desirable
property for a s:Iection rule, given the goal of selecting a subset
consisting of the large values of A Many authors have shown that

their heuristically proposed selection rules are monotone. For example,

Santner (1975) proved the monotonicity of a large class of selection
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rules. In this paper we generalize the above notion of monotonicity
and present some other notions of monotonicity. Then we show in a

unified way that for many selection problems a large class of selec-

tion rules possess these monotonicity properties.

The monotonicity properties we consider are the following. Let
A={a, ..., 3} and B = {bl. cees bk} denote two subsets of {1, ..., n}
with |A| = |B| = k, where || denotes subset size. Subset A is better
than B if, for some arrangements ai(l)""‘ai(k) and bj(l)""'bj(k) of
the elements of A and B, A 2 A for every r=1, ..., k. If

%) Pj(r)
A is better than B, then each of the following inequalities would be

desirable for a selection rule:
PA(|A nsSX| 2m 2 PA('B nS(X)| 2 m) for every m, -» s m < »; (1.1)

{In words, Px(at least m of the elements of A are selected)> P_(at least

A A

m of the elements of B are selected).]
PL(A = S(X)) 2 PL(B = S(X)); (1.2)
P,(Ia° a S(®)| <m) 2 P, (B n S(O| s m) for every m,-= < m < «. (1.3)

Some special casos may be of particular interest, By setting m = k in
(1.1) we obtain Pé(A c S(X)) 2 PL(B c $(X)). Furthermore, if k = 1,
we obtain the classical monotonicity property of Gupta (1965). By setting
m=0 in (1.3) we obtain PA(A >8(X)) 2 PA(B > 5(X)).

In Section 2 we prese;¥ the notation~;u will use and the assumptions

concerning F(x; A) and S(x) we will make. The main results, inequalities
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(1.1), (1.2), and (1.3), are proved in Section 3. The extension of

these results to include additional parsmeters and rules based on

B R e

statistics other than X is outlined in Section 4.

In a similar fashion, we can 6btain dual results for the mono-
tonicity properties of ranking and selection rules designed to select
the smallest rather than the largest values of the parameter. We omit

the detailed statement of these dual results and of their proofs.

2. Notation and assumptions. Let 1 = (wl, cevy wn) denote a per-

mutation of (1, ..., n). For any x € Rn. let x ° = denote (x' poeesXy ). !
1 n
Let g(x; A) be a function from RZn into R. We say that g is permutation ;

invariant if g(x ° n; A ° ) = g(x; A) for every x ¢ R", every Ae R",

and every permutation g.

Let 7 and x1° be two permutations such that

s i o W g
TN e o v ©

= (wl. cees Mgs wony ”j’ eses w“) and
(2.1)

-

2’ = [1!1, ....'j, csep 'i. casy "n)p

- -

PR

where i <j and o< 'nj. We say that n” is a simple transposition of

%x; in symbols, z >t g

~

Let x and n° be such that there exists a finite

mmber of permutations, !0. 11, coes gk, satisfying x = 10 >tzl f..L ot !k.z',
We say x” is a transposition of y. By extension of notation, we will
say \°x” is a transposition of A’z if x° is a transposition of g and

xl ‘ e ‘ xn.

The concept of a decreasing in transposition function will play a
central role in our exposition. The function g(x; A) is decreasing in

trensposition (DT) if
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g(x; A) is permutation invariant, 2.2)

t _.
X, € ... € X xl € ... £ An’ and x> g (2.3)
imply
g(x, A° 3 2g(x; A °x).

Hollander, Proschan, and Sethuraman (1977) (HPS(1977)) present a de-
tailed investigation of DT functions and many examples. The DT pro-
perty is called arrangement increasing by Marshall and Olkin (1979).

We assume that the observation vector X = (xl, cess Xn) has a 1 i

density g(x; )A) with respect to a measure o(X), where ¢ satisfies

f pdo(®) = / pdo(x © 1) for each permutation y and Borel set A c R". We
assume that g is DT. HPS(1977) list several discrete and continuous
densities which are DT. For example, if g(x; 1) = w;'.lh(xi; xi) and

h is TP, then g is DT. Eaton (1967), Hsu (1977), and Gupta and Miescke

2
(1982) have investigated selection problems involving a DT density.
Our results differ from theirs in that they compared the operating
characteristics or risk functions of different selection rules, where-
as, inequalities (1.1), (1.2), and (1.3) compare different operating
characteristics of a single selection rule at a time.

A nonrandomized selection rule S(x) can be defined by specifying

its irdividual selection probabilities, t_l(;). ceey vn(;g, which are

defircd by




1 ifie S
%@ = (2.4)
0 ifi¢ S

We will make the following assumptions about S(x):
if vi(;:) = ] and xj 2 x; then wj(;_t) = ]1; (2.5)
and

W; @ = o(x° 1) for every x ¢ R", every i ¢ {1, ..., n} (2.6)
i

and every permutation x.

Rules satisfying (2.5) have been called "natural” in some of the selec-
tion literature (for example, Eaton 1967). Gupta and Miescke (1982)
have shown that for problems involving exponential families, selection
rules satisfying (2.5) form an essentially complete class among all per-
mutation invariant rules for many loss functions. Both Eaton (1967)
and Gupta and Miescke (1982) allow randomization to break ties. The
permutation invariance assumption (2.6) is standard and reasonable in
light of the permutation invariance of the density g and measure o.

We have restricted attention to nonrandomized selection rules.
Typically, in the fixed subset size selection rules, ties are broken
at random., If F(x; )) is such that ties among the xi's occur with pro-
bability zero, then our results may apply to these fixed subset size
rules. But if ties occur with positive probability (for example, P(z; A)
is a m “i~omigl distribution), then our results are not directly appli-

cable to tiiese randomized, fixed subset size rules. But our results are
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applicable to the random subset size rules for the multinomial such
as those considered by Gupta and Nagel (1967) and Gupta and Huang
(1975), since the multinomial density is DT.

The following lemma will be used to prove the monotonicity results
in the next section.

LEMMA 2.1. If A = (al. cees a.k}c{l. ..., N} is better than
B= {bl. cees bk} < {1, ..., n} , then there exist vectors A” and
A°" such that a) {xa.l....,xak} al LR ETRRRIY S P ) (Abl.....xbk} =
{*;:k01""’xﬁ'}' and c) A°° is a transposition of )°.

PROOF. We will define)”and 1°“ and then show they have the re-
quired characteristics. Let r = |A® n B]. Note that r = |A n BS|,
k-t=]AnB| and nk-r= [A°a 8|, Let A' = (A7, ..., A2, ) be
the elements of {xi: i €eA® nB®} in an arbitrary but fixed order and

let (333 ...a ) =)l

2 . .
" Ker . Let A% (AL L, .o, AZ ) be the

.‘ c L d ”»
elements of {i: i ¢ A" n B} arranged so that An-k-rols ves sxn_k and

L , . 2 3 » td

let (An-kﬂ’ cvey An—kor) =A% Let )™ = “n-kol’ cees An-k+r) be

. . (] . »
the elements of {Ai. i € A n B"} arranged so that Al kepS o S A ker

- », 3 ‘ » '
and let (xn-k-r+l' vess An-k) = A\, Let A" = (ln-korwl’ cany A.) be
the elements of {Ai: i € A n B} arranged in an arbitrary but fixed
s ooy o 4

order and let (ln-kOrOI’ vees An ) = A . The two vectors are
A= ahah A% ah e pe = 1,23 0000,

Claarly,a) and b) are true by the definition of A and A°“. To
show that A““ is a transposition of A, it suffices to show that
Aﬂ-kOi 2 A;—k-ro
be obtained from A° by the sequence of r simple transpositions which

i’ i=1, ..., r; for, if this is true then A°“ cen

switch x;_k’i

al\d X;_k-r’i, i = 1. cesep r.

Jrepory

T o




To verify that An—kOi 2 An-k-r*i' i=1, ..., r, fix i. Let
i s=|AnBn {Xj: Ay 2 An—k-toi}l‘ At least s + r - i + 1 elements
1
; of B are greater than or equal to i~ because the coordinates

n-k-rei
of 5? are in nondecreasing order. Since A is better than B, corres-

ponding to each of these there must be an element in A which is greater H

than or equal to A;-k-rwi‘ The definition of s implies

c
AnB n{A.: A, 22"
|3 { J ) n-

are in nondecreasing order, ln-kOj 2 An-k-rOi’ j=i, ..., r. In

k-rei}] 2T - 1+ 1. Since the elements of

A

~

particular i’ 2 A

nekei 2 Ai_kopei’ 35 Was to be shown.||

f f 3. Monotonicity properties. In this section we prove the mono-
tonicity properties (1.1), (1.2), and (1.3). Lemma 3.1 will be used

in these proofs.

1 LEWA 3.1. let x e R, Ie {0, 1", and m ¢ R. Suppose
ij *1. cony *n’ the individual selection probabilities of a selection
g rule S, satisfy (2.5) and (2.6). Define
3 iz n
; 1 if izl L v 2n
0 if .2 I, (0 <m
' i=] ;
and 4
n .
1 if ) (1-IL)y(x) <m 1
i=] L 4
h(L, X = (3.2) -

n
0 if § (1-1)0v(x)>m.
i=1
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Then hl and h, are DT.

2
PROOF, We will prove the result for h,. The proof for h, is
similar. By 5., page 724 of HPS(1977), it suffices to show that

h(L, » = I, ;9,0 is DT, 4

The function h is permutation invariant since by (2.6), h(l « x; x ° ¥)*

n " en on

Lia RACL Lial Ty ¥n, ® = Liag 13 ;0 = h(L, ) for every
permutation 1. To verify (2.3), suppose I1 z ,,. = Ir-l = 0,
I,=...=I =1,andx <...Sx. Thenh(l,p = Ioey ¥s(®. For

x >° 3 defined by (2.1), (2.5) and (2.6) implies

Y@ 2) =¥ - w,,j(g) 2 w,i(;s) =¥xeon =¥xerx)

and

V(XM =y (xen) fors=1,...,m 5= i, j.

e Meliabi
N

Thus, for i < j<sr-lorrs<ic<j,hi,x°x =h(l, x°2x°),
and for i sr-1<r<j, h(I, xo 1) 2 h(I, x o 1°). Therefore,
h is DT. ||

THEOREM 3.1. Suppose the density g(x; A) is DT. Suppose the
individual selection probabilities of the selection rule § satisfy
(2.5) and (2.6). Let Ac{l, ..., n}andBc (1, ..., n}. IfAlis

better than B, then

Pl(lk nS(X)] 2m 2 PL(]B n S(X)| 2 m) for every m ¢ R. (3.3)

PROOF. Let h1 be defined by (3.1). Then by the Composition

WO I PRI W
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Theorem 3.3 of HPS(1977), H (L, ) = /h (L. Xe(x; Ado(x) is a DT
function. For any C ¢ {1, ..., n}, define LC s (IC. cess Ig) by

If=1ifieCandI$=04if1i{ C. Then it follows that

c 1 if |ICnS(®| 2 m
h, (X% ) = .
0 if [CnS| <m

c
Thus plclc n S| 2m) = A7, V.
Let 1°(z"") be the permutation such that A ¢ 1°(} ¢ 1°7) = A"(A”")
B - n

where A“(1°") is defined by Lemma 2.1. Then LA en" =1 ofx

~

=0, ..., 0,1, ..., 1), a vector of n - k zeros followed by k ones.

Since A“” is a transposition of \” and H1 is DT, we obtain

Py(la 0S| 2 m =1t

LN ¢ i SR

Hy(E® o 177y Ao 17
(3.49)

v

H(L® o g 20 1)
Hy 2% D
px(ln nSX)| 2m). |

The conclusion of Theorem 3.1 can be restated as, "[A n S(X)|
is stochastically larger than |B n S(X)|." This implies other in-
equalities in addition to (3.3) such as B,JA n S| 2 EAIB n S(O|.

THEOREM 3.2. Under the assumptions ;f Theorem 3.1.~

PA(|AC nSO| <m 2 PA(la" n S(X)| <m) for every m¢ R.  (3.5)
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PROOF, Let hz be defined by (3.2). By the Composition
Theorem, H,(L, 1) = /h,(L, gk Mdo(®) is DT. But for 1°
fined as in Theorem 3.1, HZ(IF- A) = PA(ICc nS(X)| <m). Thus,

de-

arguing as in (3.4), we obtain (3.5). ||

THEOREM 3.3. Under the assumptions of Theorem 3.1,
P,(A = 5(X) 2P, (B = S(X)). (3.6)

'ROOF. Let k = |A] = [B]. Let h(L, ») = h;(L, ©h,(L X,
where hl is defined in (3.1) with m = k and hz is defined in (3.2)
with m = 0. By Theorem 3.6 of HPS(1977), h is a DT function. Thus
H(L, i) = ]h(L. x)g(x; Ado(x) is DT by the Composition Theorem.
Furthermore, for !F defined as in Theorem 3.1, H(!F, A) = PA(C = 5(X)).

Thus, arguing as in (3.4), we obtain (3.6). ||

Ry N
¢ A meve W w

4. Additional parameters and statistics. In many problems,

the distribution of the observations depends not only on )\, the para-

R N e S

£ meter of interest, but also on another parameter y. In many problems
the selection rule depends not only on X but also on another statistic i
Y. In this section we present conditions in this more general frame-
work under which the monotonicity properties (1.1), (1.2), and (1.3) ;
hold.

As an example of this type of problem, consider the selection of

the largest normal mean. Suppose xl, cees xn are independent normal

means from normal populations. The mean of xi is Ai and all the xi

RO

have the same variance v. Suppose that Y is an estimate of v which
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is independent of X and such that r has a X’ distribution with
r degrees of freedom. Then Gupta (1956) proposed the following
selection rule to select a3 random size subset including the largest

xi:

Include i in the selected subset . |
S(X, Y) if and only if

X, 2 max X. - dh, i
15j<n

where d is a constant chosen by the experimenter.

Our assumptions will imply that this selection rule satisfies the

monotonicity properties (1.1}, (1.2), and (1.3).
We assume that the observation (X, Y) has a density g(x,):A,»)

with respect to a measure o(x) * u(y) where o satisfies [,do(x)=[,d (xm)

for each permutation gz and Borel set A < R". We assume that for each

fixed y € ¥, the sample space of Y, and each fixed y € N, the set of

possible values of v, g(x, X; A» V) is a DT function of x and ).
Let wl(g. X)s «+-s ¥,(X, ¥) denote the individual selection pro-

babilities of a nonrandomized selection rule S(X, Y). We assume that

(AR et b o b . o A e

for every y ¢ ¥, if ¥,(x, ¥) = 1 and x5 2 x; then "j(?ﬁ' Y) =1. VWe
also assume that y e ¥, X ¢ Rn. ie {1, ..., n}, and 1 a permutation
imply v, (5 D) = %(x° 2. 0.
THEOREM 4.1. Suppose the above assumptions concerning the dis- ‘
tributicn of (X, Y) and the form of S(X, Y) hold. Let Ac (1, ..., n} |

and B ¢ {1, ..., n). If A is better than B, then
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Pry(lA 0 SQD|=m) 2P, ([B 0 SK,Y)] 2m) for every me R, (4.1)

c
PL‘z(lA nS(LY |<m) 2P,

~?

2(|5c" S(X,Y)| sm) for every m ¢ R, (4.2)

and

Py

~P

y(A = 5% V) 2P,

~

o8 ® S&, D). (4.3)

PROOF., We will outline the proof of (4.1). The proofs of (4.2)
and (4.3) are similar.

For every ] € {0, l}n, X € Rn, and y ¢ ¥, define

n
1 if) Iv.(x Y 2m
is1 11
h(l, % ¥) = n .
0 ifizl Lb;(x ) <m.

Arguing as in Lemma 3.1, we can verify that for each fixed Y € Yy,

h is a DT function of I and x. Thus by the Composition Theorem,

Hz’ !(L. D = [h(l, x, Y&(x, X A Wdo(x) is a DT function of |

and ) for each fixed y ¢ ¥ and y ¢ N. Consequently, by Theorem 3.2

of HPS(1977), H!(L, A= ]Hz.z(;', Mdu(y) is a DT function of | and )
for each fixed y € N. But for IC defined as in Theores 3.1, az(f, A =
Px,v”c n S(X, Y)| 2m). Thus, arguing as in (3.4), we obtain (4.1). ||
o As another example of the generality of this result, consider

the comparison with a standard problem presented by Gupta and Sobel
(1958). Let xo, xl, cess xn denote independent sample means from
normal populations. The mean of xi is "i' i=0,1, ..., n. The

4
4
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variance of xo is ozlm and the variance of xi is ozlr, i=1, ..., n.

The parameters Ao, 11. cevy An and 02

known (sample sizes). Let s2 be independent of (X, xl. ceey xn)

are unknown but m'and r are

and such that \rsl"/a2 has a )(2 distribution with v degrees of free-
dom. The goal is to select a subset of {1, ..., n} which contains
{i: A > Ao}. Gupta and Sobel (1958) proposed the following selec-

tion rule:

Include i in the selected subset S(X, Y) if and

X; 2 X, - d#ézlr

0

only if

where d is a constant chosen by the experimenter.

With X = (X, coes X 30 A% (s ooes &) X = (Xgo s?), and

v= (xo, 02). the assumptions of Theorem 4.1 are readily verified

for Gupta and Sobel's selection rule. These authors considered the
more general problem in which the r's (sample sizes) associated with
the various xi's are different. The Xi's must all have the same r
for the assumptions of Theorem 4.1 to be satisfied. To our knowledge,
monotonicity properties such as these have not previously been consi-
dered in the comparison with a standard problem. But they are as

desirable in this framework as in other formulations (Bechhofer, 1954,

Gupta, 1965) of the selection problem.
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R — T OATIY
lection, decreasing ia-transposjtion/ ménotonicity, arrangemen
omparison with a dard

— oV L/
e 1f necessary And {dent¥y by block nunjer)
hfve a density g(3,7)) which is decreasing jh transposi-
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. Suppose one Yishes to select a subset of {gl, esey N}
pts associated with the largest values of the Ai's. ] Let

’invariant select?n Tule which always selects a sub‘Set asso-
gest values of the 1(’.) Let A = {i(1),...,i(x) }c'{,l’,'..';"n} and
B= {j(1),...,j(r)fe(1,...,n)} be such that Ai( 2 Aj(s)’ s=1,...,r. Then the
following three inequalities are proved. (|C| denotes the mumber of e‘lelekr\ts in C.
C® denotes the complement of C.) (1) P,(|A n S| 2m 2P (B nS(|2 d‘) for
every m ¢ R, (i1) P,(A = S(D) 2 P, (B = S(¥), and (111) P, |A® n S(D] sim)

2P (IBc n S(X)| <m) for everyam ¢ R. These generalized monotonicity p rties

are derived using a unified approach. The results apply to selection ruliss proposed
under several formulations of the selection problem.
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